МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВПО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой

МиКМ

проф. А.В. Ковалев 22.03.2024г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.О.32 Компьютерные системы и технологии

- **1.** Шифр и наименование направления подготовки/специальности: 01.03.03 Механика и математическое моделирование
- **2. Профиль подготовки/специализации:** Компьютерный инжиниринг в механике сплошных сред
- 3. Квалификация (степень) выпускника: Бакалавр
- 4. Форма обучения: Очная
- **5. Кафедра, отвечающая за реализацию дисциплины:** Механики и компьютерного моделирования
- 6. Составитель программы:

Бондарева Мария Владимировна, преподаватель, факультет ПММ, кафедра МиКМ, <u>dobrosotskaya_masha@mail.ru</u>

7. Рекомендована: НМС факультета ПММ протокол №5 от 22.03.2024

8. Учебный год: 2026-2027 Семестр 6

9. Цель и задачи учебной дисциплины:

Целями освоения учебной дисциплины являются:

- изучение методов разработки программного обеспечения для проведения вычислительного эксперимента; использование современных систем инженерного анализа для решения задач механики; осуществление поиска профессиональной информации в глобальной компьютерной сети

Задачи учебной дисциплины:

- научить студентов фундаментальным понятиям технологии программирования, ознакомить с современными компьютерными системами и технологиями, современным состоянием и перспективами развития дисциплины. Научить навыками создания программных комплексов в коллективе специалистов, использования САЕ систем в исследованиях в области механики и инженерноконструкторской практики
- **10. Место учебной дисциплины в структуре ООП**: Учебная дисциплина относится к обязательной части Блока1. Для освоения дисциплины необходимы знания дисциплин: компьютерные науки, методы вычислений, механика сплошной среды, гидромеханика (механика жидкости и газа). Освоение дисциплины позволит в дальнейшем изучать дисциплины: математические модели в МСС, математическое моделирование и компьютерный эксперимент, а также специальные курсы по профилю подготовки.

11. Компетенции обучающегося, формируемые в результате освоения дисциплины:

Код	Название компетенции	Код(ы)	Индикатор(ы)	Планируемые результаты обучения
ОПК-3	Способен использовать методы физического моделировани я и современное экспериментальное оборудование в профессиональной деятельности	ОПК-3.3	Проводит эксперимент на основе сформулирова нной физической модели явления, проанализиров ать и обобщить полученные экспериментальные результаты.	Знать: основы современных информационных технологий Уметь: анализировать и обобщать полученные экспериментальные результаты Владеть: навыками обработки экспериментальных данных

ОПК-4	Способен	ОПК-4.2	Использует	Знать: фундаментальные
	понимать		эффективные	понятия технологии
	принципы		программные	программирования
	работы		комплексы и	
	современных		создавать	Уметь: участвовать в
	информационн		программные	коллективной разработке и
	ых технологий		средства для	реализации программных
	и использовать		решения задач	модулей для развитии
	их для		науки и техники	функциональных
	решения задач		,	возможностей пакетов
	профессиональ			программ инженерно-
	ной			технических расчетов
	деятельности			·
				Владеть: навыками создания
				программных комплексов в
				коллективе специалистов,
				использования САЕ - систем в
				исследованиях в области
				механики и инженерно-
				конструкторской практики
		ОПК-4.3	Использует	Знать: быть знакомым с
			современные	современными
			информационн	компьютерными системами и
			ые технологии,	технологиями, современным
			программные	состоянием и перспективами
			средства для	развития дисциплины
			решения задач	
			В	Уметь: использовать
			профессиональ	современные системы
			ной области	инженерного анализа для
				проведения вычислительного
				эксперимента
				Владеть: практическими
				навыками эффективного
				поиска профессиональной
				информации в Интернете.

12. Объем дисциплины в зачетных единицах/часах в соответствии с учебным планом - 2/72.

Форма промежуточной аттестации(зачет/экзамен) _____ Зачет с оценкой ____.

13. Виды учебной работы:

	Трудоемкость (часы)		
Вид учебной работы	Всего	По семестрам	
Аудиторные занятия	32	32	
в том числе:			

лекции	16	16
практические		
лабораторные	16	16
Самостоятельная работа	40	40
Форма промежуточной аттестации		Зачет с оценкой
Итого:	72	72

13.1 Содержание разделов дисциплины:

No	Heereuse neeres	Consequence possess successives	Decayory postero
№ п/п	Название раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с
,	диоциплипы		помощью онлайн-
			курса, ЭУМК
1	Введение	Компьютерные системы и	Компьютерные
		информационные технологии в	системы и технологии
		прикладной математике, механике и	https://edu.vsu.ru/cours
		инженерно-конструкторской практике.	e/view.php?id=11240
2	Основы теории	Основные понятия, определения и	Компьютерные
	информационных	представления ТИПиС. Жизненный	системы и технологии
	процессов и	цикл. Основные этапы жизненного	https://edu.vsu.ru/cours
	систем.	цикла. Каноническое представление	e/view.php?id=11240
		ИС. Структурный и объектный	
		подходы при анализе, моделировании	
		и проектировании информационных	
		систем инженерного и научного	
		анализа	
3	Классификация	Принцип подхода к классификации	Компьютерные
	ИС научного и	ИС. Основные типы ИС научного и	системы и технологии
	инженерно -	инженерного назначения. Общая	https://edu.vsu.ru/cours
	технического	характеристика САПР. Системы	e/view.php?id=11240
	назначения	научного и инженерного анализа.	
		Системы технологической подготовки	
		производства.	
4	Проект OLYMPUS	История создания и развития проекта	Компьютерные
		OLYMPUS. Структура программного	системы и технологии
		комплекса. Основные и	https://edu.vsu.ru/cours
		дополнительные классы программных	e/view.php?id=11240
		единиц. Состав классов	
		Структура основной программной	
		единицы. Библиотека CRONUS –	
5	Разработка	создание и наполнение Предварительный анализ и	Компьютерные
3	газраоотка программной	Предварительный анализ и проектирование. Архитектура и	системы и технологии
	системы проекта	проектирование. Архитектура и библиотека CRONUS. Модули	https://edu.vsu.ru/cours
	OLYMPUS	функционального назначения.	e/view.php?id=11240
		Визуализация результатов	<u>5, 110 (11) (110 - 1112 10</u>
		компьютерного эксперимента.	

6	ΠΠΠ ANSYS	Назначение и функциональные возможности пакета ANSYS. Интерфейс пользователя. Построение области решения в пакете ANSYS. Генерация сеточной области в пакете ANSYS. Управление компьютерным экспериментом и визуализация результатов компьютерного эксперимента	Компьютерные системы и технологии https://edu.vsu.ru/course/view.php?id=11240
7	Поиск профессиональной информации в Интернет	Информационно – поисковые системы общего и специального назначения. Источники научной и инженернотехнической информации. Методы и инструментальные средства.	Компьютерные системы и технологии https://edu.vsu.ru/course/view.php?id=11240

13.2. Темы (разделы) дисциплины и виды занятий:

	темы (разделы) дисциплины и виды занятии.					
Nº	Наименование раздела	Виды з	ванятий (час	ов)		
п/п	ДИСЦИПЛИНЫ ДИСЦИПЛИНЫ	Лекц	Практичес	Лаборатор	Самостоятель	Bce
11/11	дисциплины	ИИ	кие	ные	ная работа	ГО
1	Введение	2		1	4	7
	Основы теории					
2	информационных	2		1	4	7
	процессов и систем.					
	Классификация ИС	· · · · · · · · · · · · · · · · · · ·				
3	научного и инженерно -	2		1	4	7
3	технического	_		'	7	′
	назначения					
4	Проект OLYMPUS	3		2	4	9
	Разработка					
5	программной системы	3		5	8	16
	проекта					
6	ΠΠΠ ANSYS	3		5	8	16
	Поиск					
7	профессиональной	1		1	8	10
'	информации в	'		'		10
	Интернет					
	Итого	16		16	40	72

14. Методические указания для обучающихся по освоению дисциплины:

На лекционных занятиях студенты знакомятся с основными понятиями курса, их логической взаимосвязью. Изучение тем начинается с лекций, которые составляют основу теоретической подготовки студентов. Лекции читаются с использованием технических средств обучения. На самостоятельной работе студенты развивают и углубляют полученные знания. Знакомство с основной и дополнительной литературой, включая справочные издания, конспект основных положений,

терминов, сведений, требующих запоминания и являющихся основополагающими в этой теме, выполнение индивидуальных заданий. Лабораторные занятия позволяют развивать у студентов творческое теоретическое мышление, умение самостоятельно изучать литературу, анализировать практику; учат четко формулировать мысль, вести дискуссию, то есть имеют исключительно важное значение в развитии самостоятельного мышления. При выполнении лабораторных работ необходимо повторить основные положения и понятия по теме задания. При использовании дистанционных образовательных технологий и электронного обучения выполнять все указания преподавателей по работе на LMS-платформе, своевременно подключаться к online-занятиям, соблюдать рекомендации по организации самостоятельной работы.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины:

а) основная литература:

	noshan miropan year
№ п/п	Источник
1	Шагрова, Г. В. Методы исследования и моделирования информационных процессов и технологий: учебное пособие / Г. В. Шагрова, И. Н. Топчиев; Северо-Кавказский федеральный университет. — Ставрополь: Северо-Кавказский Федеральный университет (СКФУ), 2016. — 180 с.: ил. — Режим доступа: по подписке. — URL: https://biblioclub.ru/index.php?page=book&id=458289
2	Куликов, И. М. Технологии разработки программного обеспечения для математического моделирования физических процессов: учебное пособие:/ И. М. Куликов. — Новосибирск: Новосибирский государственный технический университет, 2013. — Часть 1. Использование суперкомпьютеров, оснащенных графическими ускорителями. — 40 с. — Режим доступа: по подписке. — URL: https://biblioclub.ru/index.php?page=book&id=229128
3	Основы САПР : учебное пособие / И.В.Крысова, М.Н.Одинец, Т.М.Мясоедова, Д.С.Корчагин ; Минобрнауки России, Омский государственный технический университет. — Омск : Омский государственный технический университет (ОмГТУ), 2017. — 92 с. : табл., граф., схем, ил. — Режим доступа: по подписке. — URL: https://biblioclub.ru/index.php?page=book&id=493424
4	Коржов Е.Н. Введение в технологию программирования: В 3-х частях / Е.Н. Коржов, О.А. Кущева. — Воронеж : ИПЦ ВГУ, 2007 240 с. https://zzapomni.com/vgu-voronezh/korjov-vvedenie-v-tehnologiu-pro-2007-2122/view
5	Иванов Д.В., ВВЕДЕНИЕ В ANSYS WORKBENCH/ Д.В. Иванов, А.В. Доль, - Саратов: Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского, 20016. – 56 с. http://dolivanov.ru/sites/default/files/metodichka_workbench.pdf

б) дополнительная литература:

Nº ⊓/⊓	Источник
6	Основы автоматизированного проектирования изделий и технологических процессов : учебное пособие:/ Н. Р. Галяветдинов, Р. Р. Сафин, Р. Р. Хасаншин, П. А. Кайнов ; Казанский национальный исследовательский технологический университет. – Казань : Казанский научно-

	исследовательский технологический университет (КНИТУ), 2013. – 112 с. : схем. – Режим доступа: по подписке. – URL: https://biblioclub.ru/index.php?page=book&id=427925
7	Зайцев, М. Г. Объектно-ориентированный анализ и программирование : учебное пособие :/ М. Г. Зайцев ; Новосибирский государственный технический университет. — Новосибирск : Новосибирский государственный технический университет, 2017. — 84 с. : ил., табл. — Режим доступа: по подписке. — URL: https://biblioclub.ru/index.php?page=book&id=576800
8	Ефимова, И. Ю. Компьютерное моделирование: сборник практических работ / И. Ю. Ефимова, Т. Ю. Варфоломеева. — 2-е изд., стер. — Москва : ФЛИНТА, 2014. — 68 с. : табл., граф., ил. — Режим доступа: по подписке. — URL: https://biblioclub.ru/index.php?page=book&id=482123
9	Кононова, З. А. Программирование в Delphi: разработка приложений: учебное пособие: / З. А. Кононова, С. О. Алтухова; Липецкий государственный педагогический университет им. П. П. Семенова-Тян-Шанского. — Липецк: Липецкий государственный педагогический университет имени П.П. Семенова-Тян-Шанского, 2017. — Часть 1. — 110 с.: ил. — Режим доступа: по подписке. — URL: https://biblioclub.ru/index.php?page=book&id=577073

в) информационные электронно-образовательные ресурсы:

№ п/п	Источник
10	Электронная библиотека ВГУ <u>www.lib.vsu.ru</u>
11	Научно-образовательный центр при МИАН <u>www.miras.ru</u>
12	Электронная библиотека механико-математического факультета МГУ www.lib.mexmat.ru
13	Компьютерные системы и технологии / А.Н. Спорыхин — Образовательный портал «Электронный университет ВГУ». — Режим доступа: https://edu.moodle.ru .

16. Перечень учебно-методического обеспечения для самостоятельной работы (учебно-методические рекомендации, пособия, задачники, методические указания по выполнению практических (контрольных) работ и др.)

Для обеспечения самостоятельной работы студентов, в электронном курсе дисциплины на образовательном портале «Электронный университет ВГУ» сформирован учебно-методический комплекс, который включает в себя: программу курса, учебные пособия и справочные материалы, методические указания по выполнению заданий. Студенты получают доступ к данным материалам на первом занятии по дисциплине.

Указанные в учебно-методическом комплексе учебные пособия и справочные материалы, приведены в таблице ниже:

№ п/п	Источник				
	процессов	технологий : учебно	е пособие /	елирования информаці Г. В. Шагрова, И. Н. То	пчиев ;
1.	•		•	гет. – Ставрополь : С ФУ), 2016. – 180 с. :	•
	Режим	доступа:	ПО	подписке.	_

	URL: https://biblioclub.ru/index.php?page=book&id=458289				
2.	Ефимова, И. Ю. Компьютерное моделирование: сборник практических работ / И. Ю. Ефимова, Т. Ю. Варфоломеева. — 2-е изд., стер. — Москва: ФЛИНТА, 2014. — 68 с.: табл., граф., ил. — Режим доступа: по подписке. — URL: https://biblioclub.ru/index.php?page=book&id=482123				
3.	Компьютерные системы и технологии / М.В. Бондарева — Образовательный портал «Электронный университет ВГУ». — Режим доступа: https://edu.moodle.ru .				

17. Информационные технологии, используемые для реализации учебной дисциплины, включая программное обеспечение и информационно-справочные системы (при необходимости):

При реализации дисциплины могут проводиться различные типы лекций (вводная, обзорная и т.д.), применяться дистанционные образовательные технологии в части освоения лекционного материала, самостоятельной работы по дисциплине или отдельным ее разделам.

Дисциплина реализуется с применением электронного обучения и дистанционных образовательных технологий. Для организации занятий рекомендован онлайн-курс «Компьютерные системы и технологии», размещенный на платформе Электронного университета ВГУ (LMS moodle), а также Интернетресурсы, приведенные в п.15в.

18. Материально-техническое обеспечение дисциплины:

Учебная аудитория: специализированная мебель, Компьютеры, Мультимедиапроектор, Экран настенный для проектора, Аудио колонки

Программное обеспечение: Intellij IDEA Community Edition (свободное и/или бесплатное ПО), Scilab (свободное и/или бесплатное ПО), Adobe Reader (свободное и/или бесплатное ПО), Microsoft Visual Studio Community Edition (свободное и/или бесплатное ПО), Notepad ++ (свободное и/или бесплатное ПО), Free Pascal (свободное и/или бесплатное ПО), Mozilla Firefox (16 шт.) (свободное и/или бесплатное ПО)

19. Оценочные средства для проведения текущей и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется

содержанием следующих разделов дисциплины:

№ п/п	Наименование раздела дисциплины (модуля)	Компете нция(и)	Индикатор(ы) достижения компетенции	Оценочные средства
1	Введение	ОПК-4	ОПК-4.2	Собеседование
2	Основы теории информационных процессов и систем.	ОПК-3	ОПК-3.3	Собеседование
3	Классификация ИС научного и инженерно -	ОПК-3	ОПК-3.3	Собеседование

Nº п/п	Наименование раздела дисциплины (модуля)	Компете нция(и)	Индикатор(ы) достижения компетенции	Оценочные средства	
	технического назначения				
4	Проект OLYMPUS	ОПК-3	ОПК-3.3	Практикоориентированные задания/домашние задания	
5	Разработка программной системы проекта	ОПК-4	ОПК-4.2	Практикоориентированные задания/домашние задания	
6	ППП ANSYS	ОПК-4	ОПК-4.3	Практикоориентированные задания/домашние задания	
7	Поиск профессиональной информации в Интернет	ОПК-4	ОПК-4.3	Практикоориентированные задания/домашние задания	
	Промежуточная аттестация форма контроля – зачет с оценкой			Перечень вопросов	

20 Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1 Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью следующих оценочных средств: *Практикоориентированные задания/домашние задания. Собеседование*

Практикоориентированные задания/домашние задания

(наименование оценочного средства текущего контроля успеваемости)

Перечень заданий из задачников и пособий из п.16

Описание технологии проведения Решение практикоориентированных заданий происходит в течение 1 часа 30 минут в учебной аудитории, для выполнения домашних заданий предусмотрены часы из СРС Проверка правильности выполнения проводится путем проверки выполненных упражнений

Отлично	Успешное выполнение индивидуального задания, на все вопросы билета даны полные и правильные ответы.					
Хорошо	Успешное выполнение индивидуального задания, На один из вопросов билета не дан правильный ответ					
Удовлетворительно	Успешное выполнение индивидуального задания, На два вопроса билета даны не правильные ответы					
Неудовлетворительн	Не выполнено индивидуальное задание или на все					
о вопросы даны не правильные или не полные ответы						

20.2 Промежуточная аттестация

Промежуточная аттестация по дисциплине осуществляется с помощью следующих оценочных средств:

Собеседование по экзаменационным билетам

(наименование оценочного средства текущего контроля успеваемости)

Описание технологии проведения. Средство контроля, организованное как решение задач и специальная беседа преподавателя с обучающимся на темы, связанные с изучаемой дисциплиной, и рассчитанное на выяснение объема знаний обучающегося по определенному разделу, теме, проблеме и т.п.

Экзамен проводится на основе КИМ, составленных на основе вопросов для подготовки к экзамену.

Отлично	Успешное выполнение индивидуального задания, на все						
Опично	вопросы билета даны полные и правильные ответы.						
Vanaula	Успешное выполнение индивидуального задания, На один						
Хорошо	из вопросов билета не дан правильный ответ						
VEGREGIEGE	Успешное выполнение индивидуального задания, На два						
Удовлетворительно	вопроса билета даны не правильные ответы						
Неудовлетворительн	Не выполнено индивидуальное задание или на все						
о вопросы даны не правильные или не полные ответы							

20.3 Фонд оценочных средств сформированности компетенций студентов, рекомендуемый для проведения диагностических работ:

- 1) закрытые задания (тестовые, средний уровень сложности):
- 1. Что может вызывать движение жидкости в исследуемой области?
 - а) Перепад давления
 - b) Изменение плотности среды
 - с) Движение стенки канала
- 2. Минимальная совокупность факторов, качественно верно определяющих поведение исследуемого реального объекта это
 - а) Факториальная модель
 - b) Базовая модель
 - с) Степенная модель
 - d) Модель без ограничений
- 3. Математические модели относятся к
 - а) Предметные или физические модели
 - **b)** Теоретические, знаковые или символьные
- 4. Любая математическая модель должна удовлетворять условиям .
 - а) Корректности
 - b) Реальности
 - с) Многофакторности
- 5. Выберите верные утверждения
 - а) Результаты вычислений с помощью математической модели должны удовлетворять существующим экспериментальным данным
 - b) Результаты вычислений должны обладать предсказуемостью
 - с) Математическая модель может быть признана корректной, если содержит явно или неявно противоречивые утверждения, гипотезы или математические зависимости, связывающие какие-либо характеристики или параметры реального объекта.

- 6. Верно ли, что математическая модель не может содержать исключающие друг друга предположения или построения
 - а) Да
 - b) Нет
- 7. Вид математического моделирования, использующий средства вычислительной техники и современные информационные технологии
 - а) Вычислительный или компьютерный эксперимент
 - b) Инженерно-конструкторский эксперимент
 - с) Информационный эксперимент
 - d) Технический эксперимент
- 8. Свойство дискретной модели, при котором приближенное решение стремится к некоторому конечному значению, являющемуся решением соответствующей задачи это
 - а) Устойчивость
 - b) Сходимость
 - с) Адекватность
 - d) Корректность
 - 2) открытые задания (тестовые, повышенный уровень сложности):
- 1. Как называется отобажение, если какое-либо отображение оригинала геометрически полностью ему подобно, но не удовлетворяет каким-то важнейшим свойствам

Ответ: макет

- 2. Для чего необходимо задавать граничные условия? Ответ: для нахождения единственного решения
- 3. Меняется ли в круглой трубе профиль скорости при установившемся ламинарном течении жидкости?

Ответ: нет

4. Дайте определение модели.

Ответ: Искусственно созданный материальный или абстрактный (теоретический) образ или отображение реального объекта, учитывающее его наиболее важные и характерные свойства

5. Дайте определение предметной области.

Ответ: Часть или фрагмент реальной действительности, содержащий интересующий нас объект, поведение которого должно быть исследовано с помощью какого-либо метода

Задания раздела 20.3 рекомендуются к использованию при проведении диагностических работ с целью оценки остаточных знаний по результатам освоения данной дисциплины.